
IFM 2010 - TLAPS tutorial

Peterson algorithm

In this tutorial, we shall prove that Peterson’s algorithm satisfies the mutual exclusion property,
using the TLA Proof System and the Toolbox IDE.

1 Toolbox and TLAPS install

If you have not done it yet, you can download the Toolbox from

http://www.tlaplus.net/tools/tla-toolbox/

and dowload the TLA Proof System from

http://www.msr-inria.inria.fr/~doligez/tlaps/

Binaries are available for Windows, MacOS and Linux distributions. Notice that Cygwin (version
1.7 or higher) is required to install TLAPS on Windows.

2 Peterson Algorithm

This algorithm, formulated by Gary L. Peterson in 1981, is a concurrent programming algorithm
for mutual exclusion that allows two processes to share a single-use resource without conflict,
using only shared memory for communication.

2.1 Description
The algorithm allows two processes to share some resource with the three following properties:

• Mutual exclusion : the two processes cannot access the resource at the same time

• Progress: a process cannot immediately re-access the resource if the other process wants
also to access the resource.

• Bounded waiting: there exists a limit on the number of times that the other process is al-
lowed to access the resource after a process has made a request to access the resource.

We shall focus on the mutual exclusion property in the TLA+ specification we are to build.

We call critical section the moment when some process is accessing the shared resource. The Mu-
tual Exclusion property ensures that the two processes are not both in the critical section at the
same time.

The idea of the algorithm is the following: we use two variables, a function called flag, which
says for each of the processes, if it wants to access the resource or not. And a simple variable turn
which holds the process whose turn it is to enter the critical section.
At the beginning of the algorithm, flag[0] and flag[1] are equal to FALSE (none of the pro-
cesses wants to access the resource), and turn is equal to 0 (process 0 has priority to access the
resource).
Then, for making process 0 (for example) access the shared resource, we do the following:

1

http://www.tlaplus.net/tools/tla-toolbox/
http://www.msr-inria.inria.fr/~doligez/tlaps/

(a1) turn the value of flag[0] to TRUE
(process 0 does want to enter the critical section)

(a2) turn the value of turn to 1
(give the priority to the other process)

(a3) wait for flag[1] to be equal to FALSE and turn to be equal to 1
(process 1 does not want to access the resource and process 0 has priority to access it)

(cs) enter the critical section
(access the resource)

(a4) turn the value of flag[0] to FALSE
(process 0 does not want to access the resource anymore)

2.2 PlusCal version
Peterson’s algorithm can be expressed in the PlusCal language as follows:

Not(i) == IF i = 0 THEN 1 ELSE 0

--algorithm Peterson {
variables flag = [i \in {0, 1} |-> FALSE], turn = 0;
process (proc \in {0,1}) {

a0: while (TRUE) {
a1: flag[self] := TRUE;
a2: turn := Not(self);
a3a: if (flag[Not(self)]) {goto a3b} else {goto cs} ;
a3b: if (turn = Not(self)) {goto a3a} else {goto cs} ;
cs: skip; * critical section
a4: flag[self] := FALSE;
} * end while
} * end process

}

Notice that, for simplicity, the TLA+ specification we describe in the next section differs a little bit
from the one that can be directly translated from the algorithm above, by the PlusCal translator.

3 The specification

Peterson’s algorithm for two processes can already be verified by the Toolbox model-checker. But
we use it as an exercise to make you learn ho to use TLA Proof Sytem.

Peterson’s TLA+ specification can be downloaded at

http://www.msr-inria.inria.fr/~doligez/tlaps/IFM2010/Peterson.tla

Let us describe what you can find in this file.

2

http://www.msr-inria.inria.fr/~doligez/tlaps/IFM2010/Peterson.tla

3.1 Variables
We declare three variables, flag, turn and pc (which gives the current step of the algorithm).
We define vars as the tuple composed by those three variables, and ProcSet as the set {0, 1}.

VARIABLES flag, turn, pc
vars == << flag, turn, pc >>
ProcSet == ({0,1})

3.2 The Init state
We then express the initial state of the algorithm as follows:

Init == /\ flag = [i \in {0, 1} |-> FALSE]
/\ turn = 0
/\ pc = [self \in ProcSet |-> CASE self \in {0,1} -> "a0"]

flag[0] and flag[1] are equal to FALSE.
turn is equal to 0.
Both processes are entering the while spin.

3.3 The Next action
In order to define the Next action of Peterson’s algorithm, we have to describe, for each process,
every possible step of the algorithm. For example the a0 step describes the fact that the considered
process (self) is going from line a0 to line a1 in the algorithm (in that case, values of variables
flag and turn don’t change).

a0(self) == /\ pc[self] = "a0"
/\ pc’ = [pc EXCEPT ![self] = "a1"]
/\ UNCHANGED << flag, turn >>

The second line above expresses the fact that the next value of the function pc is the same as the
current one, except that its value on self is now "a1".

We then do the same for each possible step of the algorithm:

a1(self) == /\ pc[self] = "a1"
/\ flag’ = [flag EXCEPT ![self] = TRUE]
/\ pc’ = [pc EXCEPT ![self] = "a2"]
/\ UNCHANGED turn

a2(self) == /\ pc[self] = "a2"
/\ turn’ = Not(self)
/\ pc’ = [pc EXCEPT ![self] = "a3a"]
/\ UNCHANGED flag

a3a(self) == /\ pc[self] = "a3a"
/\ IF flag[Not(self)]

THEN /\ pc’ = [pc EXCEPT ![self] = "a3b"]
ELSE /\ pc’ = [pc EXCEPT ![self] = "cs"]

/\ UNCHANGED << flag, turn >>

3

a3b(self) == /\ pc[self] = "a3b"
/\ IF turn = Not(self)

THEN /\ pc’ = [pc EXCEPT ![self] = "a3a"]
ELSE /\ pc’ = [pc EXCEPT ![self] = "cs"]

/\ UNCHANGED << flag, turn >>

cs(self) == /\ pc[self] = "cs"
/\ TRUE
/\ pc’ = [pc EXCEPT ![self] = "a4"]
/\ UNCHANGED << flag, turn >>

a4(self) == /\ pc[self] = "a4"
/\ flag’ = [flag EXCEPT ![self] = FALSE]
/\ pc’ = [pc EXCEPT ![self] = "a0"]
/\ UNCHANGED turn

Now we can define proc(self) as the fact that one of the previous actions is being accom-
plished:

proc(self) == \/ a0(self) \/ a1(self) \/ a2(self) \/ a3a(self)
\/ a3b(self) \/ cs(self) \/ a4(self)

Finally, we define the Next action, as the fact that either proc is accomplished for one of the
processes, or the algorithm has finished (to prevent deadlock on termination).

Next == \E self \in {0,1}: proc(self)

3.4 Specification
The specification of the algorithm is given by the facts that the initial state is satisfied and that at
every step either the action Next is satisfied or the variables in vars keep their values.

Spec == Init /\ [][Next]_vars

3.5 Mutual Exclusion
The property we want the algorithm to satisfy can be defined as the fact that pc[0] and pc[1]
have not both value "cs" at the same time.

MutualExclusion == ~ (pc[0] = "cs" /\ pc[1] = "cs")

3.6 The invariant
Let us first define the property that ensures well-typedness of the variables .

TypeOK == /\ pc \in [{0,1} -> {"a0","a1","a2","a3a","a3b","cs","a4"}]
/\ turn \in {0,1}
/\ flag \in [{0,1} -> BOOLEAN]

Now we can define the invariant we want the algorithm to satisfy, in order to prove the
MutualExclusion property. It is defined as the fact that for each process i,

4

• if it is in step "a2", "a3a", "a3b", "cs" or "a4", then its flag is equal to TRUE (i.e. it does
want to access to the resource)

• if it is in step "cs" or "a4", then the other process is not in one of these steps, and if the
other process is in step "a3a" or "a3b" then process i has priority to access the resource.

I == \A i \in {0, 1} :
/\ (pc[i] \in {"a2", "a3a", "a3b", "cs", "a4"} => flag[i])
/\ (pc[i] \in {"cs", "a4"})

=> /\ pc[Not(i)] \notin {"cs", "a4"}
/\ (pc[Not(i)] \in {"a3a", "a3b"}) => (turn = i)

Finally, we can define the actual invariant as the conjunction of the previous one and the fact that
TypeOK is satisfied.

FullInv == TypeOK /\ I

4 Checking a simple proof from the Toolbox

As usual when we want to prove that a property is always satisfied (here MutualExclusion),
we reason by induction and define a invariant property (here FullInv) such that:

1. the initial state (here Init) satisfies the invariant,

2. the invariant is preserved by the next-state relation (here [Next]_vars),

3. the invariant ensures the correctness property (MutualExclusion).

Proving the first fact is obvious. Let us check that by asking TLAPS to prove the following theo-
rem (recall that we have to indicate explicitly which definitions we want to be usable in a proof):

THEOREM InitME == Init => MutualExclusion
BY DEF Init, MutualExclusion, ProcSet

Now, in the Toolbox, put the cursor on the first line of that theorem and then right-click on "Prove
step or module". The Toolbox then colors that theorem in green, which means that it is proved (in
this case, Zenon has succeeded in finding a proof).

5 The main theorem

Let us now focus fact number 2 above. For proving that fact it is easier to an intermediate lemma,
which states that property TypeOK is preserved by the next-state relation.

LEMMA TypeCorrect == TypeOK /\ Next => TypeOK’
<1>1. ASSUME NEW i \in {0,1}

PROVE TypeOK /\ proc(i) => TypeOK’
BY DEFS TypeOK, proc, a0, a1, a2, a3a, a3b, cs, a4, Not

<1>. QED
BY <1>1, NeverDone DEF Next

When asking TLAPS to prove the theorem above, you can notice that step <1>1 gets first colored
black. That means that Zenon has been trying to prove it for more than three seconds. Then it
gets colored red. That means that Zenon has failed to find a proof with the default timeout (ten
seconds). Finally, it gets colored green since Isabelle succeeds in proving it.

Finally, let us prove the second item of section 4.

5

THEOREM Inductive == TypeOK /\ I /\ Next => I’

We first rephrase the sequent to be proved in a more perspicuous form:

<1>1. ASSUME TypeOK,
I,
NEW i \in {0,1},
proc(i)

PROVE I’

We then assert TypeOK’ (that will be useful in the following of the proof):

<2>0. TypeOK’

We then split the result we want to prove into three assertions:

<2>1. ASSUME NEW j \in {0,1},
pc’[j] \in {"a2", "a3a", "a3b", "cs", "a4"}

PROVE flag’[j]

<2>2. ASSUME NEW j \in {0,1},
pc’[j] \in {"cs", "a4"}

PROVE pc’[Not(j)] \notin {"cs", "a4"}

<2>3. ASSUME NEW j \in {0,1},
pc’[j] \in {"cs", "a4"},
pc’[Not(j)] \in {"a3a", "a3b"}

PROVE turn’ = j

Those three assertions can be proved by case on the step in which process i is. If you ask TLAPS
to prove that theorem, you can notice that all those proof-steps are colored yellow. That means
that the proof is missing. It’s up to you now to make them green...

6

	Toolbox and TLAPS install
	Peterson Algorithm
	Description
	PlusCal version

	The specification
	Variables
	The Init state
	The Next action
	Specification
	Mutual Exclusion
	The invariant

	Checking a simple proof from the Toolbox
	The main theorem

