
S-expressions for Actions with Logic 
Temporal

David McNeil
September 2019

v6



2

TLA+ Use

● TLA+ use leads to TLA+ advocacy
● Network effects

– The ability to read specifications is more valuable if 
there are specs for more systems

– Specifications are of greater value if more people 
can read them



3

TLA+ Adoption

● Awareness
– Know about the tool

– Not silver bullet

● Ease of Use
– Know the mechanics of using the tool

● Learned skill
– Know how to use the tool well

– “thinking above the code”



4

Ease of Use

● Provide developer affordances
● Play to developers skills and expectations

– Without distracting from the fact that specs are not 
a way to write “code”



5

SALT

● S-expressions for Actions with Logic Temporal
● Express TLA+ formulas as s-expressions
● Tools to process those s-expressions / formulas

– Evaluate

– Simplify

– Simulate

– Transpile



6

What do developers want?



7

Interactivity

● Enter a TLA+ formula or expression
● See what it evaluates to
● Iterate



8

REPL

1 Read

2 Evaluate

3 Print

4 Loop (i.e. goto 1)



9

REPL

1 Read

2 Evaluate

3 Print

4 Loop (i.e. goto 1)

1 + 1
=> 2



10

REPL

● The developer is “inside” of a process running 
their code.

● The developer can inspect, manipulate, change 
the code as the process continues to run.



11

Incremental Coding

● Write one “layer” of a specific
● Confirm it works
● Move on to the next layer



12



13

Refactoring

● Change the structure of a specification without 
changing its meaning

● Do this repeatedly as thinking is clarified
● Do this confidently, without fear of breaking the 

specification



14

Auto-Formatting

● Avoid need to manually layout spacing of 
formulas

● As a specification is iteratively refactored and 
incrementally created



15

Familiar Syntax



16

What problem are we trying to 
solve?



17

Facilitate Developers Use of TLA+ 
by Providing:

● Interactivity
– Enter formulas, see what they evaluate to

● Incremental Coding
– Gradual creation of spec

● Refactoring
– Reorganizing formulas to improve clarity or performance

● Auto Formatting
– Avoid manual formatting

● Familiar Syntax



18

Goals

● Facilitate authoring of TLA+ specifications
● Lead users to the TLA+ language
● Promote TLA+ concepts

– Provide one-to-one correspondence with TLA+ 
concepts

● Leverage TLC Model Checker



19

Non-Goals

● Define new concepts
● Promote imperative programming
● Tooling for temporal operators
● Build a model checker
● Code generation

– i.e. “can I generate code from the spec?”



20



21

Consider a Language which:

● “takes a … mathematical view of the world”
● Eschews traditional, static typing
● Promotes sets as primary data structure

– Literal syntax based on:  { 1, 2, 3 } 

● Is focused on concurrent systems:
– Represent state with immutable data

– Avoid side-effects

– Carefully model state changes as atomic steps

● Provides mechanism for syntactic substitution
● Provides for mechanical manipulation of “code”



22

Consider Clojure which:

● “takes a … mathematical view of the world”
● Eschews traditional, static typing
● Promotes sets as primary data structure

– Literal syntax based on:  #{ 1, 2, 3 } 

● Is focused on concurrent systems:
– Represent state with immutable data

– Avoid side-effects

– Carefully model state changes as atomic steps

● Provides mechanism for syntactic substitution
● Provides for mechanical manipulation of “code”



23

Clojure

● A Modern Lisp
● Compiles into Java bytecode*
● Runs on Java Virtual Machine (JVM)

* and other targets



24

Clojure REPL

● Can work at REPL prompt
● Can work in an editor that sends expressions to 

the REPL to be evaluated and displays results



25

s-expressions

● Lists

(1 2 3)
● Nested Lists

((1 2) 3)
● Code as lists

(+ 1 2)
● Code as nested lists

(+ 1 (+ 2 3))



26

Primitives

Clojure

1

“hello”

true

false

(let [x 1] x)

TLA+

1

“hello”

TRUE

FALSE

LET x == 1 IN x



27

Data Structures



28

Logic

Clojure

(and true false)

(A [x #{1 2 3}]

     (> x 2))

(or true false)

       

(E [x #{1 2 3}]

   (> x 2))

 

TLA+

/\  TRUE

/\  FALSE

\A x \in { 1, 3, 2 } :          

       x > 2

\/  TRUE

\/  FALSE

\E x \in { 1, 3, 2 } :           

    x > 2



29

Operators

Clojure

(defn Add [x y]

  (+ x y))

TLA+

Add( x, y ) ==   

    x + y



30

Recursive Operators

Clojure

(defn Add [x r]

  (if (> x 5)

     (Add (- x 1)      
       (+ r 1))

     r))

TLA+

RECURSIVE Add(_, _)

Add( x, r ) ==

    IF  (x > 5)

    THEN Add((x - 1),  

             (r + 1))    

    ELSE r



31

Higher Order Operators

Clojure
(defn Work [f a b]

      (f a b))

TLA+

Work( f(_, _), a, b ) ==

    f(a, b)



32

SALT Identifiers



33

s-expressions

● Evaluate
● Simplify
● Simulate
● Transpile



34

s-expressions

● Editors understand s-expression structure
– e.g. paredit mode in Emacs

● Coding is manipulating the AST



35

(ns Clock

  (:require [salt.lang :refer :all]))

(VARIABLE clock)

(defn Init []

  (contains? #{0 1} clock))



36

salt/evaluate

(defmacro evaluate

  "Create a context in which constants are 
defined as in 'constants' and variables are 
defined as in 'state', then evaluate the 'body' 
within that context. All constants and variables 
referenced by the body must be defined."

  [constants state body]

  ...)



37

(salt/evaluate {}

               {clock 0}

               (Init))

=> true



38

(salt/evaluate {}

               {clock 1}

               (Init))

=> true



39

(salt/evaluate {}

               {clock 2}

               (Init))

=> false



40

(ns Clock

  (:require [salt.lang :refer :all]))

(VARIABLE clock)

(defn Init []

  (contains? #{0 1} clock))

(defn Tick []

  (or (and (= clock 0)

           (= clock' 1))

      (and (= clock 1)

           (= clock' 0))))



41

(salt/evaluate {}

               {clock 0

                clock' 1}

               (Tick))

=> true



42

(salt/evaluate {}

               {clock 0

                clock' 0}

               (Tick))

=> false



43

(deftest test-tick

  (is (salt/evaluate {}

                     {clock 0

                      clock' 1}

                     (Tick)))

  (is (not (salt/evaluate {}

                          {clock 0

                           clock' 0}

                          (Tick)))))



44

(deftest test-tick

  (is (salt/evaluate {}

                     {clock 0

                      clock' 1}

                     (Tick)))

  (is (not (salt/evaluate {}

                          {clock 0

                           clock' 0}

                          (Tick)))))

(run-tests)

=> {:test 1, :pass 2, :fail 0, :error 0, 
:type :summary}



45

Coding Cycle

● Think
● Design
● Code
● Get feedback
● Iterate



46

Coding “Gears”

● Does the code compile?
● Does the code run?
● Does the code give the correct answer for trivial input*?
● Does the code give the correct answer for non-trivial 

input?
● Does the code give the correct answer for tricky edge 

cases?

* tests effectively used are more than guard-rails, rather they verify our design thoughts.



47

salt/simplify

(defmacro simplify

  "Read a salt source file, create a context in 
which constants are defined as per the 
'constants' parameter and the variables are 
defined per the 'state' parameter. Then simplify 
the expression, 'e' in that context. Values for 
all constants referenced by the expression must 
be provided. Values for a subset of the variables 
referenced by the expression can be provided."

  [src-file-name constants state e]

  ...)



48

(salt/simplify "Clock.clj"

               {}

               {clock 0}

               (Tick))

=> (= clock' 1)



49

(salt/simplify "Clock.clj"

               {}

               {clock' 0}

               (Tick))

=> (= clock 1)



50

(salt/simplify "Clock.clj"

               {}

               {clock 1

                clock' 1}

               (Tick))

=> false



51

salt/simulate

(defmacro simulate
“Same arguments as for salt/simplify with 
the addition of 'n' specifying how many 
simulations to run. Seeks to explore non-
determinism to identify values for the 
unbound variables that make the expression 
true.”

  [src-file-name constants state n e]



52

(salt/simulate "Clock.clj"

               {}

               {clock 0}

               100

               (Tick))

 => #{{clock' 1}}



53

● Interact with 
REPL

● Incrementally 
build spec

● Write tests as 
appropriate

● Refactor
● Re-run test 

suites



54

salt/transpile

(defn transpile

  "Read a salt source file, convert the 
contents to TLA+ tokens and return the 
results as a string."

  [src-file-name]

  ...)



55

(ns Clock

  (:require [salt.lang :refer :all]))

(VARIABLE clock)

(defn Init []

  (contains? #{0 1} clock))

(defn Tick []

  (or (and (= clock 0)

           (= clock' 1))

      (and (= clock 1)

           (= clock' 0))))

(defn Spec []

  (and (Init)

       (always- (Tick) [clock])))



56

(salt/transpile "Clock.clj")

=>

"---------------------------- MODULE Clock ----------------------------

VARIABLE clock

Init == clock \\in { 0, 1 }

Tick ==

    IF  (clock = 0)

    THEN (clock' = 1)

    ELSE (clock' = 0)

Spec ==

    /\\  Init

    /\\  [][Tick]_<< clock >>

=====================================================================

"



57



58

SALT Provides

● Interactivity
– REPL

● Incremental Coding
– Automated tests

● Refactoring
– Regression test suite

● Auto Formatting
– s-expressions in “paredit” mode

● Familiar Syntax
– Clojure



59



60

TLA+ Adoption
● Awareness

– Know about the tool

– Not silver bullet

● Ease of Use <- SALT targeted at this
– Know the mechanics of using the tool

● Learned skill
– Know how to use the tool well

– “thinking above the code”

Make the mechanism more comfortable to 
developers so we can mature to the point of learning 
the skills of “thinking above the code”.



61

SALT In Practice

● Successfully using it to write TLA+ specs
● Accomplishes its goals
● Specs are development interactively
● Specs are tested as they are written
● When TLA+ specs are produced they are solid



62

SALT: Areas for improvement

● More refined comment handling
● Considered support for multi-module specifications
● Real numbers
● Infinite sets
● Forms such as multiple variables in \E
● Thorough pass through all of TLA+ syntax and semantics (e.g. CASE 

semantics)
● Refine names of language identifiers
● Additional simplification rules
● More sophisticated simulator (currently just a minimal proof-of-concept)
● ...



63

https://github.com/Viasat/salt



64

(comment "example spec ported from

https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit/TwoPhase.tl
a")

(ns TwoPhase

  (:require [salt.lang :refer :all]))

(CONSTANT RM)

(VARIABLE rmState tmState tmPrepared msgs)

(defn Message [] (union (maps- [:type #{"Prepared"}

                                :rm RM])

                        (maps- [:type #{"Commit" "Abort"}])))

(defn TPTypeOk []

  (and (contains? (maps- RM #{"working" "prepared" "committed" "aborted"}) rmState)

       (contains? #{"init" "committed" "aborted"} tmState)

       (subset? tmPrepared RM)

       (subset? msgs Message)))

(defn TPInit []

  (and (= rmState (fm- [rm RM]

                       "working"))

       (= tmState "init")

       (= tmPrepared #{})

       (= msgs #{})))



65

(defn TMRcvPrepared [rm]

  (and (= tmState "init")

       (contains? msgs {:type "Prepared"

                        :rm rm})

       (= tmPrepared' (union tmPrepared #{rm}))

       (CHANGED- [tmPrepared])))

(defn TMCommit []

  (and (= tmState "init")

       (= tmPrepared RM)

       (= tmState' "committed")

       (= msgs' (union msgs #{{:type "Commit"}}))

       (CHANGED- [tmState msgs])))

(defn TMAbort []

  (and (= tmState "init")

       (= tmState' "aborted")

       (= msgs' (union msgs #{{:type "Abort"}}))

       (CHANGED- [tmState msgs])))



66

(defn RMPrepare [rm]

  (and (= (get* rmState rm) "working")

       (= rmState' (EXCEPT rmState [rm] "prepared"))

       (= msgs' (union msgs #{{:type "Prepared"

                               :rm rm}}))

       (CHANGED- [rmState msgs])))

(defn RMChooseToAbort [rm]

  (and (= (get* rmState rm) "working")

       (= rmState' (EXCEPT rmState [rm] "aborted"))

       (CHANGED- [rmState])))

(defn RMRcvCommitMsg [rm]

  (and (contains? msgs {:type "Commit"})

       (= rmState' (EXCEPT rmState [rm] "committed"))

       (CHANGED- [rmState])))

(defn RMRcvAbortMsg [rm]

  (and (contains? msgs {:type "Abort"})

       (= rmState' (EXCEPT rmState [rm] "aborted"))

       (CHANGED- [rmState])))



67

(defn TPNext []

  (or (TMCommit)

      (TMAbort)

      (E [rm RM]

         (or (TMRcvPrepared rm)

             (RMPrepare rm)

             (RMChooseToAbort rm)

             (RMRcvCommitMsg rm)

             (RMRcvAbortMsg rm)))))

(defn TPSpec []

  (and (TPInit)

       (always- (TPNext) [rmState tmState 
tmPrepared msgs])))



68

---------------------------- MODULE TwoPhase ----------------------------

(*

example spec ported from

https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit/TwoPhas
e.tla

*)

CONSTANT RM

VARIABLE rmState, tmState, tmPrepared, msgs

Message == [type : {"Prepared"},

            rm : RM] \union [type : { "Commit", "Abort" }]

TPTypeOk == 

    /\  rmState \in [RM -> { "committed", "prepared", "aborted", "working" }]

    /\  tmState \in { "committed", "aborted", "init" }

    /\  tmPrepared \subseteq RM

    /\  msgs \subseteq Message

TPInit == 

    /\  rmState = [rm \in RM |-> "working"]

    /\  tmState = "init"

    /\  tmPrepared = {}

    /\  msgs = {}



69

TMRcvPrepared( rm ) ==

    /\  tmState = "init"

    /\  [type |-> "Prepared",

         rm |-> rm] \in msgs

    /\  tmPrepared' = tmPrepared \union {rm}

    /\  UNCHANGED << rmState, tmState, msgs >>

TMCommit == 

    /\  tmState = "init"

    /\  tmPrepared = RM

    /\  tmState' = "committed"

    /\  msgs' = msgs \union {[type |-> "Commit"]}

    /\  UNCHANGED << rmState, tmPrepared >>

TMAbort == 

    /\  tmState = "init"

    /\  tmState' = "aborted"

    /\  msgs' = msgs \union {[type |-> "Abort"]}

    /\  UNCHANGED << rmState, tmPrepared >>



70

RMPrepare( rm ) ==

    /\  rmState[rm] = "working"

    /\  rmState' = [rmState EXCEPT ![rm] = "prepared"]

    /\  msgs' = msgs \union {[type |-> "Prepared",

                              rm |-> rm]}

    /\  UNCHANGED << tmState, tmPrepared >>

RMChooseToAbort( rm ) ==

    /\  rmState[rm] = "working"

    /\  rmState' = [rmState EXCEPT ![rm] = "aborted"]

    /\  UNCHANGED << tmState, tmPrepared, msgs >>

RMRcvCommitMsg( rm ) ==

    /\  [type |-> "Commit"] \in msgs

    /\  rmState' = [rmState EXCEPT ![rm] = "committed"]

    /\  UNCHANGED << tmState, tmPrepared, msgs >>

RMRcvAbortMsg( rm ) ==

    /\  [type |-> "Abort"] \in msgs

    /\  rmState' = [rmState EXCEPT ![rm] = "aborted"]

    /\  UNCHANGED << tmState, tmPrepared, msgs >>



71

TPNext == 

    \/  TMCommit

    \/  TMAbort

    \/  \E rm \in RM :

            \/  TMRcvPrepared(rm)

            \/  RMPrepare(rm)

            \/  RMChooseToAbort(rm)

            \/  RMRcvCommitMsg(rm)

            \/  RMRcvAbortMsg(rm)

TPSpec == 

    /\  TPInit

    /\  [][TPNext]_<< rmState, tmState, tmPrepared, msgs >>

=========================================================


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

