
A Bug’s Life
Fixing a MongoDB Replication Protocol Bug with TLA+

William Schultz, Siyuan Zhou

Talk Outline

• MongoDB Background
• Life of a Replication Bug
• Specifying the Replication Protocol in TLA+
• Model Checking the Specification
• Takeaways

• Without a formal model, it’s nearly impossible to get a complex distributed protocol right.
TLA+ and TLC are tools that make this possible for practicing software engineers.

Background

Background

• MongoDB is a document oriented database
• A MongoDB database consists of a set of collections, where a

collection is a set of unique documents e.g.

MongoDB

{
 _id: 1,
 name: “Will”,
 company: “MongoDB”,
 age: 25
}

Background

• We have an extensive and mature testing infrastructure
• 1000s of hours of testing are run on new commits every day

o Includes unit/integration tests, randomized fuzzing, concurrency tests, Jepsen,
etc.

MongoDB Test Infrastructure

Background

• MongoDB provides the ability to run a database as a replica set
• This is a set of MongoDB nodes that coordinate to provide high

availability using a consensus protocol

Replication in MongoDB

Background

• Replica sets use a consensus protocol similar to Raft
• There is a primary node that inserts writes into the oplog
• Secondaries fetch log entries from other nodes and apply them

Replication in MongoDB

Background

• Protocol is leader based
• Replica set leaders are totally ordered by term

o The term is a monotonic counter maintained on each node

Replication in MongoDB

Background
Replication in MongoDB

SA

index 1 2

term
P1

SB

Client Write

1

index 1 2

term 1

index 1 2

term 12

Sync Source

Sync Source

Replicate Entry

Replicate Entry

1

Advance Commit Point

2
P2

Send Commit Point

Rollback

X

Background

• Replica set concepts to keep in mind:
o sync source
o commit point
o rollback
o term
o “branch of log history”

Replication in MongoDB

Life of a Replication Bug

Bug Timeline

• Series of safety and liveness bugs in replication protocol
• Stemmed from one bug found in 2016

Bug Timeline

1. 2016 - Heartbeat Commit Point Propagation (Safety)
2. 2018 - No Available Sync Source (Liveness)
3. 2019 - Sync Source Cycles (Liveness)
4. 2019 - Commit Point Held Back on Stale Nodes (Liveness)
5. 2019 - Initial Solution Fails in 5 Node Replica Set (Safety)

Bug 1: Heartbeat Commit Point Propagation

• Correctness bug found in November 2016 by a replication team
engineer

• Allowed for nodes to erroneously mark log entries as “committed”
o Consequence: client could read data it thinks is durable, even if it isn’t

2016

Bug 1: Heartbeat Commit Point Propagation
2016

A

B

C

This entry in
term 1 will be
rolled back.

Heartbeat: commit point is at 3

index 1 2 3

term 1 2 2

index 1 2 3

term 1 2 2

index 1 2 3

term 1 1

Bug 1: Heartbeat Commit Point Propagation

• Solution: Only update commit point via sync source spanning tree
o Guarantees commit points are sent between nodes on same branch of log

history

2016

P

S1 S2

S3 S4

Bug 2: No Available Sync Source

• New liveness bug found in February 2018
o Discovered in our test infrastructure

2018

Bug 2: No Available Sync Source
2018

A

B

C 1 1

Commit Point: 2

Commit Point: 2

The node won’t
choose a sync
source since its last
applied is
up-to-date.

Commit Point: 1

1 1

1 1

Bug 2: No Available Sync Source

• Solution: Relax rule sync source selection rules
o Allow nodes to sync from someone with a higher commit point if logs are the

same

2018

Bug 3: Sync Source Cycle

• Liveness bug of a new variety
• Nodes may get into sync source cycles

o Prevents them from ever syncing new log entries
• Consequence of the previous alteration to sync source selection rules

2019

Bug 3: Sync Source Cycle
2019

A B

Commit Point: 0 Commit Point: 1

After Node A restarts

Node A is ahead of Node B, so Node B
chooses Node A as sync source

Node B has a higher commit point, so
Node A syncs from Node B

1 1 1 1

Bug 3: Sync Source Cycle

• Solution: Rethink commit point propagation
• Key idea: learn commit point if it is on your branch of history

o Via heartbeats or sync source

2019

Bug 4: Commit Point Held Back on Stale Nodes

• New liveness bug noticed in February 2019
• Stale nodes may not be able to advance their commit point

2019

Bug 4: Commit Point Held Back on Stale Nodes
2019

1 1 1 1 1 1 1 2 2A

B

Commit Point: 9

Commit Point: 1

1 1 1 1 1 1

Say Node B just restarted. We cannot advance the commit point
and the stable timestamp, meaning memory pressure.

Bug 4: Commit Point Held Back on Stale Nodes

• Solution
o Relax condition for commit point updates from your sync source
o Sync source guaranteed to be on the same history branch

2019

Bug 5: Initial Solution Fails in 5 Node Replica Set

• The original solution to Bug 1 was believed safe, even though it had
liveness issues
o Discovered that the solution was not safe in replica sets with > 4 nodes
o Could lead to nodes erroneously committing log entries in certain cases

2019

Bug Timeline, 2016-2019

2016
Bug 1, Safety
Heartbeat Propagation

2018
Bug 2, Liveness
No Available Sync Source

2019
Bug 3, Liveness
Sync Source Cycles

2019
Bug 4, Liveness
Commit Point Held Back

2019
Bug 5, Safety
Initial Solution Fails

Specifying the Protocol in TLA+

MongoDB Replication TLA+ Spec
Variables

* The server's term number.

VARIABLE globalCurrentTerm

* The server's state (Follower, Candidate, or Leader).

VARIABLE state

* The commit point learned by each server.

VARIABLE commitPoint

* A sequence of log entries.

VARIABLE log

* The current sync source of each server, if it has one.

VARIABLE syncSource

MongoDB Replication TLA+ Spec
Initial State Predicate

* Define initial values for all variables.

Init == /\ globalCurrentTerm = 0

 /\ state = [i \in Server |-> Follower]

 /\ commitPoint = [i \in Server |-> [term |-> 0, index |-> 0]]

 /\ syncSource = [i \in Server |-> Nil]

 /\ log = [i \in Server |-> << >>]

MongoDB Replication TLA+ Spec
Next State Relation

* Defines how the variables may transition.

Next ==

 * -- Replication protocol

 \/ AppendOplogAction

 \/ RollbackOplogAction

 \/ BecomePrimaryByMagicAction

 \/ ClientWriteAction

 \/ ChooseNewSyncSourceAction

 * -- Commit point learning protocol

 \/ AdvanceCommitPoint

 \/ LearnCommitPointAction

MongoDB Replication TLA+ Spec
Statistics

• Original spec
o 295 lines of TLA+ including comments & model checking helpers

• Extended spec that models sync source selection
o 378 lines of TLA+ including comments & model checking helpers

https://github.com/visualzhou/mongo-repl-tla/blob/5fd666da29e7cc088ea70c8d076c12818aba372e/RaftMongo.tla
https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/RaftMongoSyncSources.tla

Model Checking

Model Checking

2016
Bug 1, Safety
Heartbeat Propagation

2018
Bug 2, Liveness
No Available Sync Source

2019
Bug 3, Liveness
Sync Source Cycles

2019
Bug 4, Liveness
Commit Point Held Back

2019
Bug 5, Safety
Initial Solution Fails

Bug 1: Heartbeat Propagation

Model Checking

1. 2016 - Heartbeat Commit Point Propagation (Safety)
2. 2018 - No Available Sync Source (Liveness)
3. 2019 - Sync Source Cycles (Liveness)
4. 2019 - Commit Point Held Back on Stale Nodes (Liveness)
5. 2019 - Initial Solution Fails in 5 Node Replica Set (Safety)

Bug Timeline

Model Checking

1. 2016 - Heartbeat Commit Point Propagation (Safety)
2. 2018 - No Available Sync Source (Liveness)
3. 2019 - Sync Source Cycles (Liveness)
4. 2019 - Commit Point Held Back on Stale Nodes (Liveness)
5. 2019 - Initial Solution Fails in 5 Node Replica Set (Safety)

Bug Timeline

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes

• The action used for propagating commit points via heartbeat

* Node i learns the commit point from j via heartbeat.

LearnCommitPoint(i, j) ==

 /\ CommitPointLessThan(i, j)

 /\ commitPoint' = [commitPoint EXCEPT ![i] = commitPoint[j]]

 /\ UNCHANGED <<electionVars, logVars, syncSource>>

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes

• The invariant we want to check:

RollbackCommitted(i) ==

 \E j \in Server:

 /\ CanRollbackOplog(i, j)

 /\ IsCommitted(i, Len(log[i]))

* The invariant to check.

NeverRollbackCommitted == \A i \in Server: ~RollbackCommitted(i)

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes, LearnCommitPoint action

• Model checking stats:
o 3 nodes, a symmetry set
o Propagate commit point via heartbeats (LearnCommitPoint action)
o State constraints: globalCurrentTerm ≤ 3, ∀ i ∈ Server : Len(log[i]) ≤ 3

o Invariant: NeverRollbackBeforeCommitPoint
o 2015 Macbook Pro, 3 CPU Cores (3.1 GHz Intel Core i7)
o Invariant violation found in ~2 seconds after generating ~500 distinct states
o 9177 distinct states in full state space
o TLC config

https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/1_LearnCommitPoint.cfg

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes

• We can try fix the protocol with a new action definition:

LearnCommitPointFromSyncSource(i, j) ==

 /\ ENABLED AppendOplog(i, j) * only learn commit point from sync source.

 /\ LearnCommitPoint(i, j)

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes, LearnCommitPointFromSyncSource action

• Model checking stats:
o 3 nodes, a symmetry set
o Propagate commit point via sync source (LearnCommitPointFromSyncSource action)
o State constraints: globalCurrentTerm ≤ 3, ∀ i ∈ Server : Len(log[i]) ≤ 3

o Invariant: NeverRollbackBeforeCommitPoint
o 2015 Macbook Pro, 3 CPU Cores (3.1 GHz Intel Core i7)
o No errors found, TLC finished in ~3 seconds
o 7402 distinct states in full state space

• 1775 fewer states than the previous model

o TLC config

https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/1_LearnCommitPointFromSyncSource_3_node.cfg

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 3 nodes

• The protocol appears to be safe when using the sync source
propagation rule

• Is it safe with more than 3 nodes, though?

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 5 nodes, LearnCommitPointFromSyncSource action

• Model checking stats:
o 5 nodes, a symmetry set
o Propagate commit point via sync source (LearnCommitPointFromSyncSource action)
o State constraints: globalCurrentTerm ≤ 3, ∀ i ∈ Server : Len(log[i]) ≤ 3

o Invariant: NeverRollbackBeforeCommitPoint
o Ubuntu 16.10 workstation, 10 CPU cores (3.40GHz Intel Core i7)
o Invariant violation found in ~2 seconds after generating ~3000 distinct states
o 230,091 distinct states in full state space, TLC finished in ~1 min.
o This bug was never found in production or testing
o TLC config

https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/1_LearnCommitPointFromSyncSource_5_node.cfg

Model Checking
Bug 1: Heartbeat Commit Point Propagation, 5 nodes

SD

SC

SA

SB

P2

Uncommitted entry

index 1

term 2

index 1

term

index 1

term 1

index 1

term 2

index 1

term 2

Send Commit Point

1

Replicate Entry

Model Checking

2016
Bug 1, Safety
Heartbeat Propagation

2018
Bug 2, Liveness
No Available Sync Source

2019
Bug 3, Liveness
Sync Source Cycles

2019
Bug 4, Liveness
Commit Point Held Back

2019
Bug 5, Safety
Initial Solution Fails

Bug 3: Sync Source Cycles

Model Checking

2016
Bug 1, Safety
Heartbeat Propagation

2018
Bug 2, Liveness
No Available Sync Source

2019
Bug 3, Liveness
Sync Source Cycles

2019
Bug 4, Liveness
Commit Point Held Back

2019
Bug 5, Safety
Initial Solution Fails

Bug 2: No Available Sync Source

Model Checking

1. 2016 - Heartbeat Commit Point Propagation (Safety)
2. 2018 - No Available Sync Source (Liveness)
3. 2019 - Sync Source Cycles (Liveness)
4. 2019 - Commit Point Held Back on Stale Nodes (Liveness)
5. 2019 - Initial Solution Fails in 5 Node Replica Set (Safety)

Bug Timeline

Model Checking
Bug 2: No Available Sync Source

• We define a liveness property of commit points that we want to hold
true

* At any time, if two nodes' commit points are not the same, they

* will be the same eventually.

CommitPointEventuallyPropagates ==

 /\ \A i, j \in Server:

 (commitPoint[i] /= commitPoint[j] ~> commitPoint[i] = commitPoint[j])

Model Checking
Bug 2: No Available Sync Source

• Slight modification needed to account for perpetual rollbacks

* At any time, if two nodes' commit points are not the same, they

* will be the same eventually.

* This is checked after all possible rollback is done.

CommitPointEventuallyPropagates ==

 /\ \A i, j \in Server:

 (commitPoint[i] /= commitPoint[j] ~>

 (~ENABLED RollbackOplogAction => commitPoint[i] = commitPoint[j]))

Model Checking
Bug 2: No Available Sync Source

• Demonstrated the original liveness bug with TLC
o 3 nodes
o Property: CommitPointEventuallyPropagates
o 2015 Macbook Pro, 3 CPU Cores (3.1 GHz Intel Core i7)
o Temporal Property Violation found in 1 min. 06s
o 19,694 distinct states generated
o TLC config

https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/3_CommitPointPropagationLiveness.cfg

Model Checking

1. 2016 - Heartbeat Commit Point Propagation (Safety)
2. 2018 - No Available Sync Source (Liveness)
3. 2019 - Sync Source Cycles (Liveness)
4. 2019 - Commit Point Held Back on Stale Nodes (Liveness)
5. 2019 - Initial Solution Fails in 5 Node Replica Set (Safety)

Bug Timeline

Model Checking
Bug 3: Sync Source Cycles

• We add an action to model sync source selection
• And then specify our correctness property

o We will specify this particular liveness property as an invariant

Model Checking
Bug 3: Sync Source Cycles

* Server i chooses server j as its new sync source.

* i can choose j as a sync source if log[i] is a prefix of log[j] and log[j] is longer than log[i].

ChooseNewSyncSource(i, j) ==

 /\ \/ IsLogPrefix(i, j)

 * If logs are equal, allow choosing sync source if it has a newer commit point.

 \/ /\ log[i] = log[j]

 /\ commitPoint[j].index > commitPoint[i].index

 /\ state[i] = Follower * leaders don't need to sync oplog entries.

 /\ syncSource' = [syncSource EXCEPT ![i] = j]

 /\ UNCHANGED <<electionVars, logVars, commitPoint>>

Model Checking
Bug 3: Sync Source Cycles

* Does a 2 node sync source cycle exist?

SyncSourceCycleTwoNode ==

 \E s, t \in Server :

 /\ s /= t

 /\ syncSource[s] = t

 /\ syncSource[t] = s

• Specifying the case of a 2 node cycle is much easier:

Model Checking
Bug 3: Sync Source Cycles

• We can also specify the general case i.e. a multi-node cycle
• Core idea: model the sync source spanning tree/graph in TLA+

P

S1 S2

S3 S4

Nodes

Edges

Model Checking
Bug 3: Sync Source Cycles

* The set of all paths (with bounded length) in the node graph that consists

* of edges <<s,t>> where s has t as a sync source.

SyncSourcePaths ==

 {p \in BoundedSeq(Server, Cardinality(Server)) :

 \A i \in 1..(Len(p)-1) : syncSource[p[i]] = p[i+1]}

Model Checking
Bug 3: Sync Source Cycles

* Is there a non-trivial path in the sync source graph from node i to node j?

* This rules out trivial paths i.e. those of length 1.

SyncSourcePath(i, j) ==

 \E p \in SyncSourcePaths :

 /\ Len(p) > 1

 /\ p[1] = i * the source node.

 /\ p[Len(p)] = j * the target node.

* Does a general (multi-node) sync source cycle exist?

SyncSourceCycle == \E s \in Server : SyncSourcePath(s, s)

Model Checking
Bug 3: Sync Source Cycles

• Finally, we can ask specifically for cycles of size > 2

* The sync source cycle predicate.

NonTrivialSyncCycle == SyncSourceCycle /\ ~SyncSourceCycleTwoNode

* The invariant.

NoNonTrivialSyncCycle == ~NonTrivialSyncCycle

Model Checking
Bug 3: Sync Source Cycles

• Model checking stats:
o 4 nodes, a symmetry set
o State constraints: globalCurrentTerm ≤ 3, ∀ i ∈ Server : Len(log[i]) ≤ 3

o Invariant: NoNonTrivialSyncCycle
o 2015 Macbook Pro, 3 CPU Cores (3.1 GHz Intel Core i7)
o Invariant violation found in ~6 seconds
o 226,262 distinct states in full state space
o Multi-node sync source cycle was never seen in production or testing
o TLC config

https://github.com/will62794/mongo-repl-tla-models/blob/34711a7289fb1323c06d171a073b06a45ee26811/2_MultiNodeSyncSourceCycle.cfg

Takeaways

Takeaways

• Hard to know if a protocol is really correct without a formal model
o It’s very difficult for humans to reason about edge cases of

concurrent/distributed algorithms
• Even very simple and abstract models can help catch non-trivial bugs

o No models allowed more than 3 log entries per node
o Asynchronous message passing was not modeled explicitly in our spec

Takeaways

• We expect that formally modeling our system upfront could have saved
100s of hours of engineering time
o Multi-year effort to root out all these bugs
o Only took a few weeks to model and check the protocol using TLA+

• Future goal is to integrate TLA+ into design process at MongoDB

Takeaways

• The specs and models used can be found here:
https://github.com/will62794/mongo-repl-tla-models

https://github.com/will62794/mongo-repl-tla-models

